A comprehensive of transforms, Gabor filter and k-means clustering for text detection in images and video
نویسنده
چکیده
Wavelet transform; Multilingual text; Wavelet decomposition; Gabor filter; k-Means clustering; Linked list approach; Wavelet entropy Abstract The present paper presents one of the efficient approaches towards multilingual text detection for video indexing. In this paper, we propose a method for detecting text located in varying and complex background in images/video. The present approach comprises four stages: In the first stage, combination of wavelet transform and Gabor filter is applied. By applying single level 2D wavelet decomposition with Gabor filter, the intrinsic features comprising sharp edges and texture features of an input image are obtained. In the second stage, the resultant Gabor image is classified using k-means clustering algorithm. In the third stage, morphological operations are performed on clustered pixels. Then a concept of linked list approach is used to build a true textline sequence of connected components. In the final stage, wavelet entropy of an input image is measured by signifying the complexity of unsteady signals corresponding to the position of textline sequence of connected components in leading to determine the true text region of an input image. The performance of the
منابع مشابه
Detection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملDesigning an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform
Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...
متن کاملAn Unsupervised Scheme for Detection of Microcalcifications on Mammograms
Clusters of Microcalcifications which appear like small white grains of sand on Mammograms are the earliest signs of Breast Cancer. In this work we employ a Gabor filter bank for texture analysis of mammograms to detect microcalcifications. A subset of the Gabor filter bank with a certain central frequency and different orientations is used to obtain the Gabor-filtered images. The filtered imag...
متن کاملTexture Classification of Diffused Liver Diseases Using Wavelet Transforms
Introduction: A major problem facing the patients with chronic liver diseases is the diagnostic procedure. The conventional diagnostic method depends mainly on needle biopsy which is an invasive method. There are some approaches to develop a reliable noninvasive method of evaluating histological changes in sonograms. The main characteristic used to distinguish between the normal...
متن کامل